第1章 極限與函數

1-3 函數的概念

- 1. 已知函數 $f(x) = \frac{|x|}{x}$, 求:
 - (1) f(x)的定義域

- (2) f(x)的值域
- 解 (1)因為分母不可為0,所以f(x)的定義域為 $\Box \{0\}$.
 - (2) 當 x > 0 時, $f(x) = \frac{x}{x} = 1$; 當 x < 0 時, $f(x) = \frac{-x}{x} = -1$. 故 f(x) 的值域為 $\{1,-1\}$.

- 2. 已知函數 $f(x) = \sqrt{8-2x-x^2}$, 求:
 - (1) f(x)的定義域

- (2) f(x)的值域
- 解 (1)因為根號內不可為負數,所以

$$8-2x-x^2 \ge 0 \implies x^2+2x-8 \le 0 \implies (x+4)(x-2) \le 0$$
.

解得 $-4 \le x \le 2$.

故 f(x)的定義域為 $\{x \in \square \mid -4 \le x \le 2\}$.

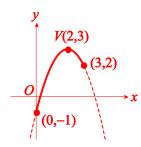
(2)因為

$$f(x) = \sqrt{8-2x-x^2} = \sqrt{-(x+1)^2+9}$$

且 $-4 \le x \le 2$,所以 $0 \le f(x) \le 3$.

故 f(x) 的值域為 $\{y \in \square \mid 0 \le y \le 3\}$.

- 已知函數 $f(x) = \log_{3}(9-x^{2})$, 求:
 - (1) f(x)的定義域


(2) f(x)的值域

- **解** (1)因為真數 $9-x^2 > 0$,即 -3 < x < 3, 所以f(x)的定義域為 $\{x \in \square \mid -3 < x < 3\}$.
 - (2)因為 $0 < 9 x^2 \le 9$,所以

$$\log_3(9-x^2) \le \log_3 9 = 2$$
.

故f(x)的值域為 $\{y \in \square \mid y \le 2\}$.

- 已知函數 $f(x) = -x^2 + 4x 1$ 的定義域為 $\{x \in \square \mid 0 \le x \le 3\}$, 求 f(x)的值域 . 4.
- **解** (1)函數 $f(x) = -x^2 + 4x 1 = (x 2)^2 + 3$ 的圖形是以 V(2,3) 為頂點, 直線x=2為對稱軸之開口向下的拋物線.
 - (2)因為定義域為 $\{x \in \square \mid 0 \le x \le 3\}$,所以函數圖形為拋物線的一部分, 如下圖中的實線部分:

因為圖形的最高點為頂點V(2,3),最低點為(0,-1),

所以函數 f(x) 的值域為 $\{y \in \square \mid -1 \le y \le 3\}$.

- 設f(x) = -2x + 3的值域為 $\{y \in \square \mid -5 \le y \le 9\}$,求f(x)的定義域. 5.
- 由 解

$$-5 \le -2x + 3 \le 9$$
 \Rightarrow $-8 \le -2x \le 6$ \Rightarrow $-3 \le x \le 4$.

得 f(x) 的定義域為 $\{x \in \square \mid -3 \le x \le 4\}$.

14 第 1 章 極限與函數

求 $\sum_{k=0}^{\infty} [\log_2 k]$ 的值,其中符號[]為<u>高斯</u>符號.

原式 =
$$[\log_2 1] + [\log_2 2 + [\log_3 3 + \cdots + \log_3 2]$$

= 0 $(1) + 1(1 + \cdots + 2) + (2 + \cdots + 3) + (3 + \cdots + 2)$
= 0 $(1) + 2 + 8 + 2 + 4 + 2 + \cdots + 3 + (4 + 3) + (4 + 3$

7. 已知函數 $f(x) = \frac{x-1}{r}$ 與 $g(x) = \frac{x}{r-1}$, 求下列各函數:

$$(1)(f-g)(x)$$

$$(2)(f \cdot g)(x)$$

$$(3)(g \circ f)(x)$$

(1)
$$(f-g)(x) = f(x) - g(x) = \frac{x-1}{x} - \frac{x}{x-1} = \frac{(x-1)^2 - x^2}{x(x-1)} = \frac{-2x+1}{x^2 - x}$$
.

(2)
$$(f \cdot g)(x) = f(x) \cdot g(x) = \frac{x-1}{x} \cdot \frac{x}{x-1} = 1$$
.

$$(3) (g \circ f)(x) = g(f(x)) = g\left(\frac{x-1}{x}\right) = \frac{\frac{x-1}{x}}{\frac{x-1}{x}-1} = -x+1.$$

設 f(x) = 2x + 1, 求一次函數 g(x) 使得 $(f \circ g)(x) = x$.

解 設 g(x) = ax + b, 則

$$(f \circ g)(x) = f(g(x)) = f(ax+b) = 2(ax+b)+1 = 2ax+(2b+1)$$
.

因為 $(f \circ g)(x) = x$, 所以

$$2a = 1 \coprod 2b + 1 = 0$$
,

解得
$$a = \frac{1}{2}$$
, $b = -\frac{1}{2}$, 即 $g(x) = \frac{1}{2}x - \frac{1}{2}$.